Preliminary study on automatic feedback in formative assessments

Mashanum Osman^{1,*}, Sazalinsyah Razali², Yogan Jaya Kumar¹, Halizah Basiron¹, Fatin Aliah Phang Abdullah³

*Corresponding e-mail: mashanum@utem.edu.my

Keywords: preliminary study, effective feedback, formative assessments

ABSTRACT – This paper describes a study that has been carried out as a preliminary study for automatic feedback in formative assessments for Malaysian students in higher education. Learning Outcomes (LO), which are essential for quality standards, usually are achieved when students can manage and organize information to How do we know if the students really learning. understand and demonstrate their understanding align with the LO. In the last decade there has been an increasing interest in harnessing technology to deliver learning and assessment activities that simultaneously assist students' learning and improve academic productivity in higher education in the face of ever increasing class sizes and diminishing resources. However, to assess the student's understanding is more crucial. This preliminary study involves distributing online survey related to the student's experience and opinion in online learning. The objective of this research gauge the characteristics of effective feedback in designing and implementing automatic feedback in the formative assessment that can further improve students' performance.

1. INTRODUCTION

Formative assessment is defined globally as an ongoing, flexible, and more informal diagnostic tool. On the other hand, summative assessment is an evaluation of the sum product of the lesson [1]. Summative assessments are more formal, structured, and often used to normalize performance to be measured and compared. It is understood that formative assessments play a vital role in teaching and learning. It assists in improving the students' performance in the course. Formative assessments also provide meaningful input to the lecturers in terms of the teaching strategies used.

Studies have shown that getting feedback has a significant positive impact on learning outcomes. Even though the number of students in higher education in Malaysia is remarkably increasing over the last couple of decades, we have not seen a corresponding change in focus regarding assessment. In [2], the authors point out that this is problematic because it ignores how feedback contributes to students' self-understanding and motivation, emphasizing the importance of activating the student and using teacher assessment, students' self-assessment. Feedback is vital for developing metacognition and establishing good study habits and study

and examination techniques. Therefore, it is crucial to address this, especially in the case of novice students.

However, it is cumbersome and time-consuming to provide timely and effective feedback to individual students in a course with many students, aside from returning their marks. Managing such a vast amount of written feedback is also tiring. As a result, few lecturers do not provide students with formative assessments, probably because of the time it takes to prepare and, most importantly, no time to provide adequate written feedback afterward. This might hamper students' attainments of the Course Learning Outcomes (CLOs). It is known that in Outcome-Based Education (OBE), the use of Formative Assessments is highly required in order to achieve the CLO of the course [3-7].

We gathered feedback from 52 Computer Science students who studied for a degree in Computer Science in their second year. The results show a positive response from the students, indicating that automatic feedback helps them learn. More specifically, this paper is to answer the following research questions:

- a) What are the characteristics of effective feedback in teaching and learning that improve students' performance?
- b) Is the performance of students better after receiving automatic feedback on their formative assessments?

2. METHODOLOGY

In this section, the preparation and the process of this evaluation are described. In this study, 52 Computer Science respondents are selected from one public university in Malaysia to answer an online survey related to their experience and opinion in online learning. The study is conducted at the end of the semester after the students finished their learning and examinations. This small sample is used to gauge the characteristics of effective feedback in designing and implementing automatic feedback in formative assessments that can further improve students' performance.

3. DISCUSSIONS AND FINDINGS

For this study, questionnaires have been distributed to 52 students from Computer Science students. The questionnaire was distributed at the end of their semesters, and the respondents have experienced online learning for at least two semesters. Figure 1 shows that the majority

¹⁾ Center for Advanced Computing Technology, Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.

²⁾ Centre for Robotics and Industrial Automation, Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.

³⁾ Centre for Engineering Education, Faculty of Social Sciences and Humanities, School of Education, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.

of the students like to have immediate feedback.

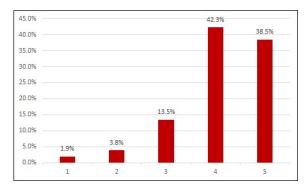


Figure 1 "Do you like immediate feedback?"

For questions (refer Figure 1) "Do you like immediate feedback?" From the results, 19 (36.5%) students strongly agreed, and 23 (36.5%) students agreed to have immediate online learning feedback. Question (refer Figure 2) on "Do you think that the online activities help you understand this topic?". From the results, most of the students agree that online activities help them understand the topic for the subject. 32.7% strongly agree, 30.8% not sure.

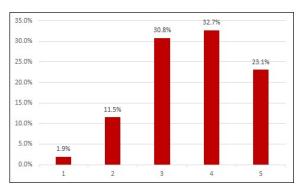


Figure 2 "Do you think that the online activities help you understand this topic?"

We can also see that few students did not agree that online activities help them understand the topic. From these results (refer to Figure 1 and Figure 2), we assume that having feedback will help the students understand their learning process. This can be further related to the question "Having the correct answer immediately?" From this question, 28.8% strongly agree, 34.6% agree, 28.8% neutral, 5.8% disagree, and the remaining 1.9% strongly disagree. Thus, students expect a lecturer to provide feedback for their answers.

4. CONCLUSION

From the preliminary study results, in this early stage it can be concluded that automated feedback can help students improve their learning experience. Students prefer to have feedback instead of only having correct answers displayed upon answering. Students' performance is assumed to be better after receiving automatic feedback, yet this needs to be studied in a further investigation for more accurate results.

5. ACKNOWLEDGMENT

The authors would like to thank the Center for Advanced Computing Technology (C-ACT), Centre for Robotics and Industrial Automation (CeRIA), Fakulti Teknologi Maklumat dan Komunikasi (FTMK), and Universiti Teknikal Malaysia Melaka (UTeM) for the facilities provided and for supporting this work. This work is supported by UTeM research grant number PJP/2020/FTMK/TVET/S01805.

REFERENCES

- [1] Lyuba, P, John, N & Edward, K. (2016). Focusing on the Formative: Building an Assessment System Aimed at Student Growth and Development, *Academic Medicine 91(11)*, 1492-1497. DOI: 10.1097/ACM.0000000000001171
- [2] Tee, D. D., & Ahmed, P. K. (2014). 360 degree feedback: An integrative framework for learning and assessment. *Teaching in Higher Education* 19(6), 579–591. DOI: 10.1080/13562517.2014.901961
- [3] Malaysian Qualifications Agency. (2017). Code of Practice: Programme Accreditations.
- [4] Malaysian Qualifications Agency. (2011). Guidelines to Good Practices: Curriculum Design & Delivery.
- [5] Malaysian Qualifications Agency. (2014). Guidelines to Good Practices: Assessment of Students.
- [6] Ramsden, P. (1992). Learning to teach in higher education. Routledge.
- [7] Biggs, J. (2003). Aligning teaching for constructing learning. The Higher Education Academy.
- [8] Brown, T. B., et al. (2020). Language Models are Few-Shot Learners. arXiv:2005.14165
- [9] Heaven, W. D. (July 20, 2020). OpenAI's new language generator GPT-3 is shockingly good—and completely mindless. MIT Technology Review. https://www.technologyreview.com/2020/07/20/10 05454/openai-machine-learninglanguagegenerator-gpt-3-nlp/
- [10] GPT-3. (8 Sep 2020). A robot wrote this entire article. Are you scared yet, human? *The Guardian*. https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-thisarticle-gpt-3
- [11] Heaven, W. D. (October 8, 2020). A GPT-3 bot posted comments on Reddit for a week and no one noticed. *MIT Technology Review*. https://www.technologyreview.com/2020/10/08/10 09845/a-gpt-3-bot-posted-commentson-reddit-for-a-week-and-no-one-noticed/
- [12] Jacob Devlin, et al. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805
- [13] Kolchinski, Y. A., Ruan, S., Schwartz, D., & Brunskill, E. (2018, June). Adaptive natural language targeting for student feedback. In *Proceedings of the Fifth Annual ACM Conference on Learning at Scale*, 1-4.
- [14] Ekbote, O., & Inamdar, V. (2020). A Realistic Mathematical Approach for Academic Feedback Analysis System. In *Proceeding of International*

- Conference on Computational Science and Applications, 127-137. Springer, Singapore.
- [15] Zhang, H., Magooda, A., Litman, D., Correnti, R., Wang, E., Matsmura, L.C., Howe, E. & Quintana, R., 2019, July. erevise: Using natural language processing to provide formative feedback on text evidence usage in student writing. In *Proceedings* of the AAAI Conference on Artificial Intelligence 33, 9619-9625.
- [16] Rahimi, Z., Litman, D., Correnti, R. et al. (2017). Assessing Students' Use of Evidence and Organization in Response-to-Text Writing: Using Natural Language Processing for Rubric Based Automated Scoring. *International Journal of Artificial Intelligence in Education* 27, 694–728. https://doi.org/10.1007/s40593-017-0143-2
- [17] Rodrigues, F., & Oliveira, P. (2014). A system for formative assessment and monitoring of students' progress. Computers & Education 76, 30-41.
- [18] Webb, M. E., Prasse, D., Phillips, M., Kadijevich, D. M., Angeli, C., Strijker, A., Carvalho, A. A., Andresen, B. B., Dobozy, E. & Laugesen, H., (2018). Challenges for IT-enabled formative of complex 21st century skills. *Technology, Knowledge and Learning 23(3)*, 441-456.